Resit exam — Analysis (WPMA14004)

Thursday 9 July 2015, 9.00h–12.00h University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (6 + 9 points)

Assume that $A \subset \mathbb{R}$ is nonempty and bounded above.

- (a) State the definition of "least upper bound of A".
- (b) Prove that $-A \stackrel{\text{def}}{=} \{-a : a \in A\}$ is bounded below and $\inf(-A) = -\sup A$.

Problem 2 (8 + 4 + 3 points)

Assume that $a_n \neq 0$ for all $n \in \mathbb{N}$ and $L = \lim \left| \frac{a_{n+1}}{a_n} \right|$ exists. Prove the following statements:

(a) For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|(L-\epsilon)^k |a_N| < |a_{N+k}| < (L+\epsilon)^k |a_N|$$
 for all $k \in \mathbb{N}$.

(b) $L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ converges absolutely. (c) $L > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverges.

Problem 3 (10 + 5 points)

Let $K_n \subset \mathbb{R}$ be compact for all $n \in \mathbb{N}$.

- (a) Prove that $\bigcap_{n=1}^{\infty} K_n$ is compact.
- (b) Give an example of compact sets $K_n \subset \mathbb{R}$ such that $\bigcup_{n=1}^{\infty} K_n$ is **not** compact.

Problem 4 (10 + 5 points)

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and periodic with period T > 0:

$$f(x+T) = f(x)$$
 for all $x \in \mathbb{R}$.

- (a) Prove that there exists a constant M > 0 such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$.
- (b) Assume in addition that $f(x + \frac{1}{2}T) = -f(x)$ for all $x \in \mathbb{R}$. Prove that f(x) = 0 for infinitely many points x.

Problem 5 (15 points)

Prove that $f(x) = \sum_{n=1}^{\infty} \frac{\log(n+x) - \log(n)}{n}$ is differentiable on [0, 1].

Problem 6 (3 + 12 points)

Define the function $f:[0,1] \to \mathbb{R}$ as

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x \in \left[\frac{p-1}{p}, \frac{p}{p+1}\right) \text{ for some } p \in \mathbb{N}, \\ 0 & \text{if } x = 1. \end{cases}$$

- (a) Sketch the graph of f on the interval $[0, \frac{3}{4})$.
- (b) Prove that f is integrable on [0, 1]. Hint: use partitions for which all subintervals have equal length.

Solution of Problem 1 (6 + 9 points)

- (a) A number $s \in \mathbb{R}$ is the least upper bound of A if:
 - (i) s is an upper bound of A, which means that a ≤ s for all a ∈ A;
 (3 points)
 - (ii) if s' is another upper bound for A, then $s \le s'$. (3 points)

(b) By the Axiom of Completeness $s = \sup A$ exists. Since $s = \sup A$ is an upper bound of A we have that $a \leq s$ for all $a \in A$. This implies that $-s \leq -a$ for all $a \in A$, which shows that -s is a lower bound of -A. We conclude that -A is bounded below. (4 points)

Since $s = \sup A$ is the *least* upper bound of A we have that for all $\epsilon > 0$ there exists an $a \in A$ such that $s - \epsilon < a$, which is equivalent to $-a < -s + \epsilon$. This proves that for any $\epsilon > 0$ the number $-s + \epsilon$ is no longer a lower bound for -A. (4 points)

We conclude that -s is the greatest lower bound for -A, i.e., $\inf(-A) = -\sup A$. (1 point)

Solution of Problem 2 (8 + 4 + 3 points)

(a) Let $\epsilon > 0$ be arbitrary, then there exists $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad \left| \left| \frac{a_{n+1}}{a_n} \right| - L \right| < \epsilon$$

Rewriting the inequality gives

$$n \ge N \quad \Rightarrow \quad (L-\epsilon)|a_n| < |a_{n+1}| < (L+\epsilon)|a_n|.$$

(4 points)

Setting n = N proves the desired statement for k = 1. If the statement is true for some $k \in \mathbb{N}$, then it follows that

$$N+k+1 > N \quad \Rightarrow \quad |a_{N+k+1}| < (L+\epsilon)|a_{N+k}| < (L+\epsilon)(L+\epsilon)^{k}|a_{N}| = (L+\epsilon)^{k+1}|a_{N}|,$$

which proves the inequality for k + 1. The other inequality is proven similarly. By induction, the statement holds for all $k \in \mathbb{N}$. (4 points)

- (b) If L < 1 we can take $0 < \epsilon < 1 L$ so that $0 < L + \epsilon < 1$. By part (a) it follows that for *n* sufficiently large, the terms $|a_n|$ are bounded by the terms of a convergent geometric series. By the Comparison Test it follows that $\sum_{n=N}^{\infty} |a_n|$ converges, which means that $\sum_{n=N}^{\infty} a_n$ converges absolutely. (4 points)
- (c) If L > 1 we can take 0 < ε < L − 1 so that L − ε > 1. By part (a) it follows that the sequence (a_n) is unbounded. Therefore, ∑_{n=1}[∞] a_n diverges.
 (3 points)

Solution of Problem 3 (10 + 5 points)

(a) Let $K = \bigcap_{n=1}^{\infty} K_n$. To prove that K is compact we need to show that K is closed and bounded.

```
(2 \text{ points})
```

Since K_1 is compact it is bounded. In addition, we have that $K \subset K_1$. This proves that also K is bounded.

(4 points)

Each K_n is closed, because it is compact. The arbitrary intersection of closed sets is again closed. This proves that K is closed as well. (4 points)

(b) In general the union $\bigcup_{n=1}^{\infty} K_n$ is not compact, even when all sets K_n are compact. For example, each set $K_n = [-n, n]$ is closed and bounded and therefore compact. However, the union

$$\bigcup_{n=1}^{\infty} K_n = \mathbb{R}$$

is unbounded and therefore not compact. (5 points)

Problem 4 (10 + 5 points)

(a) Since f is continuous on R also |f| is continuous on R. The set [0, T] is compact and therefore |f| attains a maximum and a minimum on [0, T]. We conclude there exists a constant M > 0 such that |f(x)| ≤ M for all x ∈ [0, T].
(6 points)

Let $x \in \mathbb{R}$ be arbitrary. Then there exists a number $k \in \mathbb{Z}$ such that $x + kT \in [0, T]$. Since f is T-periodic it follows that

$$|f(x)| = |f(x+kT)| \le M.$$

(4 points)

(b) If f(0) = 0 then the statement is obvious by the periodicity of f.

If $f(0) \neq 0$, then f(0) and $f(\frac{1}{2}T)$ have opposite sign. Since f is continuous we can apply the Intermediate Value Theorem: there exists $c \in (0, \frac{1}{2}T)$ such that f(c) = 0. (4 points)

By periodicity of f we have that f(c + kT) = 0 for all $k \in \mathbb{Z}$. We conclude that f(x) = 0 for infinitely many points $x \in \mathbb{R}$. (1 point)

Solution of Problem 5 (15 points)

For all $x \in [0, 1]$ we have that

$$f_n(x) = \frac{\log(n+x) - \log(n)}{n} \quad \Rightarrow \quad f'_n(x) = \frac{1}{n(n+x)} \quad \Rightarrow \quad |f'_n(x)| \le \frac{1}{n^2}$$

The Weierstrass M-test with $M_n = 1/n^2$ implies that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges } \Rightarrow \sum_{n=1}^{\infty} f'_n(x) \text{ converges uniformly on } [0,1]$$

(5 points)

Since $f_n(0) = 0$ for all $n \in \mathbb{N}$ the series $\sum_{n=1}^{\infty} f_n(x)$ trivially converges for x = 0. (3 points)

Recall Theorem 6.4.3. Let f_n be differentiable functions on [a, b] and assume that $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly to some function g(x) on [a, b]. If there exists a point $x_0 \in [a, b]$ such that $\sum_{n=1}^{\infty} f_n(x_0)$ converges, then the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly to a differentiable function f(x) on [a, b] with f'(x) = g(x).

(5 points)

Above we have checked that the conditions of the theorem are satisfied. We conclude that the given series defines a differentiable function on [0, 1]. (2 points)

Problem 6 (3 + 12 points)

(a) Note that f is piecewise constant:

$$\begin{aligned} x &\in \left[0, \frac{1}{2}\right) \implies f(x) = 1\\ x &\in \left[\frac{1}{2}, \frac{2}{3}\right) \implies f(x) = \frac{1}{2}\\ x &\in \left[\frac{2}{3}, \frac{3}{4}\right) \implies f(x) = \frac{1}{3} \end{aligned}$$

(1 point for each correct line segment)

(b) Let
$$P = \{0 = x_0 < x_1 < \dots < x_n = 1\}$$
 be a partition of $[0, 1]$ such that
 $x_k - x_{k-1} = \frac{1}{n}$ for all $k = 1, \dots, n$.
From part (a) it follows that f is decreasing. Therefore, we have that

From part (a) it follows that f is decreasing. Therefore, we have

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\} = f(x_{k-1})$$

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\} = f(x_k)$$

for all $k = 1, \ldots, n$. (4 points)

The difference between the upper and lower sum of f with respect to P is

$$U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1})$$
$$= \frac{1}{n} \sum_{k=1}^{n} (f(x_{k-1}) - f(x_k))$$
$$= \frac{f(x_0) - f(x_n)}{n}$$
$$= \frac{1}{n}.$$

(6 points)

By the Archimedean Property of \mathbb{R} there exists $n \in \mathbb{N}$ such that

$$\frac{1}{n} < \epsilon$$

In this case $U(f, P) - L(f, P) < \epsilon$. We conclude that f is integrable on [0, 1]. (2 points)