
Resit exam — Analysis (WPMA14004)

Thursday 9 July 2015, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (6 + 9 points)

Assume that A ⊂ R is nonempty and bounded above.

(a) State the definition of “least upper bound of A”.

(b) Prove that −A
def
= {−a : a ∈ A} is bounded below and inf(−A) = − supA.

Problem 2 (8 + 4 + 3 points)

Assume that an 6= 0 for all n ∈ N and L = lim

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

exists. Prove the following

statements:

(a) For all ǫ > 0 there exists N ∈ N such that

(L− ǫ)k|aN | < |aN+k| < (L+ ǫ)k|aN | for all k ∈ N.

(b) L < 1 ⇒
∑

∞

n=1
an converges absolutely.

(c) L > 1 ⇒
∑

∞

n=1
an diverges.

Problem 3 (10 + 5 points)

Let Kn ⊂ R be compact for all n ∈ N.

(a) Prove that
⋂

∞

n=1
Kn is compact.

(b) Give an example of compact sets Kn ⊂ R such that
⋃

∞

n=1
Kn is not compact.
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Problem 4 (10 + 5 points)

Let f : R → R be continuous and periodic with period T > 0:

f(x+ T ) = f(x) for all x ∈ R.

(a) Prove that there exists a constant M > 0 such that |f(x)| ≤ M for all x ∈ R.

(b) Assume in addition that f(x + 1

2
T ) = −f(x) for all x ∈ R. Prove that f(x) = 0 for

infinitely many points x.

Problem 5 (15 points)

Prove that f(x) =

∞
∑

n=1

log(n+ x)− log(n)

n
is differentiable on [0, 1].

Problem 6 (3 + 12 points)

Define the function f : [0, 1] → R as

f(x) =











1

p
if x ∈

[

p− 1

p
,

p

p+ 1

)

for some p ∈ N,

0 if x = 1.

(a) Sketch the graph of f on the interval [0, 3

4
).

(b) Prove that f is integrable on [0, 1].

Hint: use partitions for which all subintervals have equal length.

End of test (90 points)
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Solution of Problem 1 (6 + 9 points)

(a) A number s ∈ R is the least upper bound of A if:

(i) s is an upper bound of A, which means that a ≤ s for all a ∈ A;
(3 points)

(ii) if s′ is another upper bound for A, then s ≤ s′.
(3 points)

(b) By the Axiom of Completeness s = supA exists. Since s = supA is an upper bound
of A we have that a ≤ s for all a ∈ A. This implies that −s ≤ −a for all a ∈ A, which
shows that −s is a lower bound of −A. We conclude that −A is bounded below.
(4 points)

Since s = supA is the least upper bound of A we have that for all ǫ > 0 there exists
an a ∈ A such that s− ǫ < a, which is equivalent to −a < −s + ǫ. This proves that
for any ǫ > 0 the number −s + ǫ is no longer a lower bound for −A.
(4 points)

We conclude that −s is the greatest lower bound for −A, i.e., inf(−A) = − supA.
(1 point)

Solution of Problem 2 (8 + 4 + 3 points)

(a) Let ǫ > 0 be arbitrary, then there exists N ∈ N such that

n ≥ N ⇒

∣

∣

∣

∣

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

− L

∣

∣

∣

∣

< ǫ

Rewriting the inequality gives

n ≥ N ⇒ (L− ǫ)|an| < |an+1| < (L+ ǫ)|an|.

(4 points)

Setting n = N proves the desired statement for k = 1. If the statement is true for
some k ∈ N, then it follows that

N+k+1 > N ⇒ |aN+k+1| < (L+ǫ)|aN+k| < (L+ǫ)(L+ǫ)k|aN | = (L+ǫ)k+1|aN |,

which proves the inequality for k + 1. The other inequality is proven similarly. By
induction, the statement holds for all k ∈ N.
(4 points)

(b) If L < 1 we can take 0 < ǫ < 1 − L so that 0 < L + ǫ < 1. By part (a) it follows
that for n sufficiently large, the terms |an| are bounded by the terms of a convergent
geometric series. By the Comparison Test it follows that

∑

∞

n=N
|an| converges, which

means that
∑

∞

n=N
an converges absolutely.

(4 points)

(c) If L > 1 we can take 0 < ǫ < L− 1 so that L− ǫ > 1. By part (a) it follows that the
sequence (an) is unbounded. Therefore,

∑

∞

n=1
an diverges.

(3 points)
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Solution of Problem 3 (10 + 5 points)

(a) Let K =
⋂

∞

n=1
Kn. To prove that K is compact we need to show that K is closed

and bounded.
(2 points)

Since K1 is compact it is bounded. In addition, we have that K ⊂ K1. This proves
that also K is bounded.
(4 points)

Each Kn is closed, because it is compact. The arbitrary intersection of closed sets is
again closed. This proves that K is closed as well.
(4 points)

(b) In general the union
⋃

∞

n=1
Kn is not compact, even when all sets Kn are compact.

For example, each set Kn = [−n, n] is closed and bounded and therefore compact.
However, the union

∞
⋃

n=1

Kn = R

is unbounded and therefore not compact.
(5 points)

Problem 4 (10 + 5 points)

(a) Since f is continuous on R also |f | is continuous on R. The set [0, T ] is compact and
therefore |f | attains a maximum and a minimum on [0, T ]. We conclude there exists
a constant M > 0 such that |f(x)| ≤ M for all x ∈ [0, T ].
(6 points)

Let x ∈ R be arbitrary. Then there exists a number k ∈ Z such that x+ kT ∈ [0, T ].
Since f is T -periodic it follows that

|f(x)| = |f(x+ kT )| ≤ M.

(4 points)

(b) If f(0) = 0 then the statement is obvious by the periodicity of f .

If f(0) 6= 0, then f(0) and f(1
2
T ) have opposite sign. Since f is continuous we can

apply the Intermediate Value Theorem: there exists c ∈ (0, 1
2
T ) such that f(c) = 0.

(4 points)

By periodicity of f we have that f(c + kT ) = 0 for all k ∈ Z. We conclude that
f(x) = 0 for infinitely many points x ∈ R.
(1 point)

Solution of Problem 5 (15 points)

For all x ∈ [0, 1] we have that

fn(x) =
log(n + x)− log(n)

n
⇒ f ′

n
(x) =

1

n(n+ x)
⇒ |f ′

n
(x)| ≤

1

n2

The Weierstrass M-test with Mn = 1/n2 implies that

∞
∑

n=1

1

n2
converges ⇒

∞
∑

n=1

f ′

n
(x) converges uniformly on [0, 1]
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(5 points)

Since fn(0) = 0 for all n ∈ N the series
∑

∞

n=1
fn(x) trivially converges for x = 0.

(3 points)

Recall Theorem 6.4.3. Let fn be differentiable functions on [a, b] and assume that
∑

∞

n=1
f ′

n
(x)

converges uniformly to some function g(x) on [a, b]. If there exists a point x0 ∈ [a, b] such
that

∑

∞

n=1
fn(x0) converges, then the series

∑

∞

n=1
fn(x) converges uniformly to a differ-

entiable function f(x) on [a, b] with f ′(x) = g(x).
(5 points)

Above we have checked that the conditions of the theorem are satisfied. We conclude that
the given series defines a differentiable function on [0, 1].
(2 points)

Problem 6 (3 + 12 points)

(a) Note that f is piecewise constant:

x ∈ [0, 1

2
) ⇒ f(x) = 1

x ∈ [1
2
, 2

3
) ⇒ f(x) = 1

2

x ∈ [2
3
, 3

4
) ⇒ f(x) = 1

3

(1 point for each correct line segment)

(b) Let P = {0 = x0 < x1 < · · · < xn = 1} be a partition of [0, 1] such that

xk − xk−1 =
1

n
for all k = 1, . . . , n.

From part (a) it follows that f is decreasing. Therefore, we have that

Mk = sup{f(x) : x ∈ [xk−1, xk]} = f(xk−1)

mk = inf{f(x) : x ∈ [xk−1, xk]} = f(xk)

for all k = 1, . . . , n.
(4 points)

The difference between the upper and lower sum of f with respect to P is

U(f, P )− L(f, P ) =

n
∑

k=1

(Mk −mk)(xk − xk−1)

=
1

n

n
∑

k=1

(f(xk−1)− f(xk))

=
f(x0)− f(xn)

n

=
1

n
.

(6 points)

By the Archimedean Property of R there exists n ∈ N such that

1

n
< ǫ

In this case U(f, P )− L(f, P ) < ǫ. We conclude that f is integrable on [0, 1].
(2 points)
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